Weil ’ s Conjecture on Tamagawa Numbers ( Lecture 1 ) April 2 , 2013

ثبت نشده
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complete characterization of the Mordell-Weil group of some families of elliptic curves

 The Mordell-Weil theorem states that the group of rational points‎ ‎on an elliptic curve over the rational numbers is a finitely‎ ‎generated abelian group‎. ‎In our previous paper, H‎. ‎Daghigh‎, ‎and S‎. ‎Didari‎, On the elliptic curves of the form $ y^2=x^3-3px$‎, ‎‎Bull‎. ‎Iranian Math‎. ‎Soc‎.‎‎ 40 (2014)‎, no‎. ‎5‎, ‎1119--1133‎.‎, ‎using Selmer groups‎, ‎we have shown that for a prime $p...

متن کامل

Congruences for critical values of higher derivatives of twisted Hasse-Weil L-functions

et E be an elliptic curve defined over a number field k and F a finite cyclic extension of k of p-power degree for an odd prime p. Under certain technical hypotheses, we describe a reinterpretation of the Equivariant Tamagawa Number Conjecture (‘ETNC’) for E, F/k and p as an explicit family of p-adic congruences involving values of derivatives of the Hasse-Weil L-functions of twists of E, norma...

متن کامل

ar X iv : 0 80 1 . 47 33 v 1 [ m at h . A G ] 3 0 Ja n 20 08 Yang - Mills theory and Tamagawa Numbers

The unexpected link which is the topic of this article was remarked on by Atiyah himself and his collaborator Raoul Bott in their fundamental 1983 paper [AB83] on the Yang-Mills equations over Riemann surfaces. In this paper Atiyah and Bott used ideas coming from Yang-Mills theory and equivariant Morse theory to derive inductive formulae for the Betti numbers of the moduli spaces M(n, d) of sta...

متن کامل

On the elliptic curves of the form $ y^2=x^3-3px $

By the Mordell-Weil theorem‎, ‎the group of rational points on an elliptic curve over a number field is a finitely generated abelian group‎. ‎There is no known algorithm for finding the rank of this group‎. ‎This paper computes the rank of the family $ E_p:y^2=x^3-3px $ of elliptic curves‎, ‎where p is a prime‎.

متن کامل

Notes on Tamagawa Number

Remark 2. It looks like from the definition τ(G) depends on the number field K, so it should be τK(G). If L is a finite extension of K, we have τL(G) = τK(RL/K(G)). Weil showed that in fact the Tamagawa number is independent of Weil restriction, i.e., τL(G) = τK(RL/K(G)) = τK(G). This is proved with details in the paper by Oesterlé ”Nombres de Tamagawa et groupes unipotentes en caractéristique ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013